• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biomaterials in Traumatic Brain Injury: Challenges and Perspectives

    View/Open
    preprints202309.0369.v1.pdf (696.2Kb)
    Date
    2023-09-06
    Author
    Aqel, Sarah
    Al-Thani, Najlaa
    Haider, Mohammad Z.
    Abdelhady, Samar
    Al Thani, Asmaa A.
    Kobeissy, Firas H.
    Shaito, Abdullah A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Traumatic brain injury (TBI) is among the leading causes of mortality and long-term impairment globally. TBI has a dynamic pathology encompassing a variety of metabolic and molecular events that occur in two phases, primary and secondary. An external forceful blow to the brain initiates the primary phase, which is followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. There is currently no FDA-approved drug for TBI, but existing approaches rely on delivering small and macromolecular treatments, which are severely constrained by the BBB, poor retention, off-target toxicity, and complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for diagnosis and treatment of TBI. Tissue engineering and use of biomaterials is one such alternative approach. With this approach, neuronal stem cell therapy is combined with synthetically generated tissue materials such as hydrogels, self-assembling peptides, and electrospun nanofibers, which may induce neurite outgrowth, differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines tissue engineering and the use of biomaterials as potential treatments for TBI, including their synthesis, mechanisms of action, and limitations. The review also discusses challenges facing tissue engineering and biomaterial technology including survival rate of transplanted stem cells and the development of biodegradable, biocompatible, and mechanically flexible biomaterials. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help guide the design of future TBI therapies.
    DOI/handle
    http://dx.doi.org/10.20944/preprints202309.0369.v1
    http://hdl.handle.net/10576/47582
    Collections
    • Biomedical Research Center Research [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video