• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine learning for prediction of the uniaxial compressive strength within carbonate rocks

    Thumbnail
    Date
    2023-06-01
    Author
    Abdelhedi, Mohamed
    Jabbar, Rateb
    Said, Ahmed Ben
    Fetais, Noora
    Abbes, Chedly
    Metadata
    Show full item record
    Abstract
    The Uniaxial Compressive Strength (UCS) is an essential parameter in various fields (e.g., civil engineering, geotechnical engineering, mechanical engineering, and material sciences). Indeed, the determination of UCS in carbonate rocks allows evaluation of its economic value. The relationship between UCS and numerous physical and mechanical parameters has been extensively investigated. However, these models lack accuracy, where as regional and small samples negatively impact these models' reliability. The novelty of this work is the use of state-of-the-art machine learning techniques to predict the Uniaxial Compressive Strength (UCS) of carbonate rocks using data collected from scientific studies conducted in 16 countries. The data reflect the rock properties including Ultrasonic Pulse Velocity, density and effective porosity. Machine learning models including Random Forest, Multi Layer Perceptron, Support Vector Regressor and Extreme Gradient Boosting (XGBoost) are trained and evaluated in terms of prediction performance. Furthermore, hyperparameter optimization is conducted to ensure maximum prediction performance. The results showed that XGBoost performed the best, with the lowest Mean Absolute Error (ranging from 17.22 to 18.79), the lowest Root Mean Square Error (ranging from 438.95 to 590.46), and coefficients of determination (R2) ranging from 0.91 to 0.94. The aim of this study was to improve the accuracy and reliability of models for predicting the UCS of carbonate rocks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149296332&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12145-023-00979-9
    http://hdl.handle.net/10576/47930
    Collections
    • Computer Science & Engineering [‎2483‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video