• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nutrient retention and release from raw exhausted grape marc biochars and an amended agricultural soil: Static and dynamic investigation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    ETI-2020.pdf (882.3Kb)
    Date
    2020-08-31
    Author
    Amel, Ibn Ferjani
    Jellali, Salah
    Akrout, Hanene
    Limousy, Lionel
    Hamdi, Helmi
    Thevenin, Nicolas
    Jeguirim, Mejdi
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Biochar is the solid by-product of biomass thermochemical conversion via pyrolysis technique. Biochar addition to croplands as an organic amendment can improve soil properties and increase agricultural productivity. However, these positive effects depend largely on biomass feedstock and pyrolysis conditions. In this study, nutrient release from biochars derived from the slow pyrolysis of exhausted grape marc (EGM) at 300, 400 and 500 °C (EGM300, EGM400 and EGM500) was investigated through five successive leaching assays in batch mode for a total duration of 10 days. Then, nutrient leaching/retention kinetics of an agricultural soil amended with EGM500 (1% and 5% w/w) was assessed under dynamic conditions in columns. The batch experiments showed that with the exception of P, the nutrient release efficiency from the three biochars significantly increased with the increase of the number of leaching trials. The highest released amounts were observed at the fifth leaching cycle for K, Ca, P and Mg, which were about 45.5%, 41.5%, 229.5% and 48.9% higher than those registered during the first leaching assay. Regarding the column release experiments, a biochar content of 5% in the agricultural soil resulted in an increase of water leached NO3− and K+ by about 181.4% and 521.3%, respectively, and a significant reduction in Na+ and Ca2+ transport as compared to unamended soil. In a second phase, outcomes of column feeding with a nutrient solution showed that PO43− and NO3− retention by biochar-amended soils is low. Thus, the use of EGM biochar as a slow release biofertilizer could be considered as a promising agricultural practice and a sustainable solution for biowaste management.
    URI
    https://www.sciencedirect.com/science/article/pii/S235218642030314X
    DOI/handle
    http://dx.doi.org/10.1016/j.eti.2020.100885
    http://hdl.handle.net/10576/48414
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video