• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Subcellular protein expression models for microsatellite instability in colorectal adenocarcinoma tissue images

    Thumbnail
    View/Open
    Open Access Version of Record under the terms of the Creative Commons Attribution 4.0 International License (8.446Mb)
    Date
    2016-10-22
    Author
    Kovacheva, Violeta N.
    Rajpoot, Nasir M.
    Metadata
    Show full item record
    Abstract
    Background New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation. Results We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data. Conclusions The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture.
    DOI/handle
    http://dx.doi.org/10.1186/s12859-016-1243-y
    http://hdl.handle.net/10576/4935
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video