• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Context Specific Generative Adversarial Networks for Audio Data Completion

    Thumbnail
    Date
    2023-01-01
    Author
    Maayah, Marina
    Al-Ali, Abdulaziz
    Belhi, Abdelhak
    Metadata
    Show full item record
    Abstract
    Audio quality plays an essential role in several applications ranging from music to voice conversations. Sound information is subject to quality loss caused by reasons such as intermittent network connections, or storage corruption. Recent approaches resorted to using GANs for audio reconstruction due to their successful deployment in visual applications. However, audio datasets often include sounds from different contexts which increase the complexity of the patterns to be learned, leading to sub-optimal quality reconstruction. We propose a novel audio completion pipeline that clusters audio based on similarity of features extracted by a pre-trained CNN model and then trains a dedicated specialized GAN for each context separately. The proposed technique is compared with the traditional method of training one general GAN in completing 200ms missing segments of 1-second audio samples. Experimental results on a public benchmark dataset show that using specialized GANs led to a clear improvement in the completion quality as measured by a higher PSNR and a lower MSE. Qualitative evaluation also supported these results.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85168547484&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JEEIT58638.2023.10185733
    http://hdl.handle.net/10576/49633
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video