• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Social & Economic Survey Research Institute
  • Social & Economic Survey Research Institute Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Social & Economic Survey Research Institute
  • Social & Economic Survey Research Institute Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-resolution rural poverty mapping in Pakistan with ensemble deep learning

    Thumbnail
    View/Open
    journal.pone.0283938.pdf (1.401Mb)
    Date
    2023
    Author
    Agyemang, Felix S. K.
    Memon, Rashid
    Wolf, Levi John
    Fox, Sean
    Metadata
    Show full item record
    Abstract
    High resolution poverty mapping supports evidence-based policy and research, yet about half of all countries lack the survey data needed to generate useful poverty maps. To overcome this challenge, new non-traditional data sources and deep learning techniques are increasingly used to create small-area estimates of poverty in low- and middle-income countries (LMICs). Convolutional Neural Networks (CNN) trained on satellite imagery are emerging as one of the most popular and effective approaches. However, the spatial resolution of poverty estimates has remained relatively coarse, particularly in rural areas. To address this problem, we use a transfer learning approach to train three CNN models and use them in an ensemble to predict chronic poverty at 1 km2 scale in rural Sindh, Pakistan. The models are trained with spatially noisy georeferenced household survey containing poverty scores for 1.67 million anonymized households in Sindh Province and publicly available inputs, including daytime and nighttime satellite imagery and accessibility data. Results from both holdout and k-fold validation exercises show that the ensemble provides the most reliable spatial predictions in both arid and non-arid regions, outperforming previous studies in key accuracy metrics. A third validation exercise, which involved ground-truthing of predictions from the ensemble model with original survey data of 7000 households further confirms the relative accuracy of the ensemble model predictions. This inexpensive and scalable approach could be used to improve poverty targeting in Pakistan and other low- and middle-income countries.
    DOI/handle
    http://dx.doi.org/10.1371/journal.pone.0283938
    http://hdl.handle.net/10576/49719
    Collections
    • Social & Economic Survey Research Institute Research [‎291‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video