• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of tank engine crank shaft material properties

    Thumbnail
    Date
    2023
    Author
    Abdel-Salam, Abdel-Salam G.
    Sohail, Ayesha
    Sherin, Lubna
    Azim, Qurat Ul Ain
    Faisal, Ayesha
    Fahmy, Mohamed Abdelsabour
    Li, Zhiwu
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Metals and coating materials, with best material properties are highly desired in the field of engineering to control the stresses and strains, that play important role in design strategies. The crankshaft, an important part of tank engine, depends on the cranking mechanism in the internal combustion engine. The function of the crankshaft is to convert the sliding motion of the piston into rotary motion. Since most industrial mechanisms and processes make more efficient use of rotary motions rather than displacements, the function of crankshaft becomes very vital. To understand the reason behind the fatigue and heavy load cycles, a mathematical model is simulated. The complex geometry of crankshaft is developed in a numerical solver. The model is simulated relative to several material properties to mimic the resulting fatigue. The numerical data was optimized using the python Bayesian optimization tools, to forecast the threshold values relative to longer duration. In the recent literature, different nano-composites are acquiring at- tention as the coating materials, to tackle with the friction load. The hybrid modeling approach used during this research can help to simulate the stresses, resulting from dif- ferent nanocomposite coatings.
    DOI/handle
    http://dx.doi.org/10.1080/15397734.2021.1916754
    http://hdl.handle.net/10576/49811
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video