• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid ejector-absorption refrigeration systems: A review

    Thumbnail
    View/Open
    energies-14-06576-v2.pdf (5.470Mb)
    Date
    2021
    Author
    Mukhtar, Hamza K.
    Ghani, Saud
    Metadata
    Show full item record
    Abstract
    Absorption Refrigeration Systems (ARS) are potential alternatives to direct expansion (DX) refrigeration systems. This review focused on the incorporation of an ejector into absorption refrigeration cycles to constitute Hybrid Ejector-Absorption Refrigeration Systems (HEARS). The ejector adds several advantages to the absorption refrigeration systems depending on its location in the cycle. The two prevalent configurations of HEARS are Triple pressure level (TPL-HEARS), and Low Pressure Condenser (LPC-HEARS). Previous studies revealed the preference of the latter configuration as it allows lower circulation ratios, enhances the refrigeration effect, and could achieve a COP up to 1. Moreover, LPC configuration is suitable with single, double, and variable-effect absorption systems with a COP of above unity. In turn, the TPL-HEARS notably enhances the absorption process, particularly when a variable geometry ejector is utilized. This configuration could obtain a COP around 1.1, but only with high-density refrigerant vapor. Lately, to attain the advantages of both configurations, some studies investigated the viability of adding two ejectors to the cycle. This paper meticulously reviews investigations conducted on the emerging dual ejectors-absorption refrigeration technology. This paper reveals the general performance trend and the maximum attainable COP by each type of hybrid ejector-absorption refrigeration system. DEARS and Ejector-driven absorption refrigeration systems (ED-ARS) could achieve COP that ranges between 1.2 and 1.46. The use of a flash tank and a RHE is essential in NH3/H2O HEARS. At high generator temperatures (of 120–170 °C), DEARS was found to be the system with less complexity and best performance. Nevertheless, the performance of the DEARS might drop significantly if the heat source temperature is fluctuating. Thence, the variable-effect HEARS is considered the best alternative. The capability of HEARS to be integrated with different power generation cycles is also highlighted. Finally, the review presents possible future research opportunities to improve the absorption refrigeration technology.
    DOI/handle
    http://dx.doi.org/10.3390/en14206576
    http://hdl.handle.net/10576/50160
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video