• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new design of solar tower system amplified with a thermoelectric unit to produce distilled water and power

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Khanmohammadi, Shoaib
    Abdi Chaghakaboodi, Hooman
    Musharavati, Farayi
    Metadata
    Show full item record
    Abstract
    In this paper, a new design of a solar tower system boosted with a thermoelectric generator (TEG) for power generation and distilled water production, is proposed and investigated. The suggested system includes a solar tower unit with atmospheric air as heat transfer fluid, a helium Brayton cycle, two organic Rankin cycles (ORCs) with R-123 as working fluid, thermoelectric generator, and reverse osmosis (RO) desalination unit. The systems under investigation are the gas turbine-helium Brayton system (GT-HBS) as the primary system and the gas turbine-helium Brayton system integrated with TEG and RO (GT-HBS/TEG-RO) as the proposed system. A new aspect of the present work is the waste heat recovery using TEG modules to enhance the performance. Analysis indicates that the energy efficiency of GT-HBS and GT-HBS/TEG-RO systems is 43.88% and 62.44% and the exergy efficiency of GT-HBS/TEG-RO is 20.23 % higher than the GT-HBS. Additionally, the results show that employing TEGs in the primary system leads to the net output power, energy, and exergy efficiencies increment about 941 kW, 3.7%, and 5.28%, respectively. Based on the parametric analysis with an increasing inlet temperature of the gas turbine, the net output power, energy, and exergy efficiencies, and volume flow rate of the freshwater increase. Furthermore, the increment of the direct normal irradiation leads to the energy and exergy efficiencies enhancement. Besides, raising compressor pressure ratio, the net output power, energy, and exergy efficiencies first increase intensively then decrease gradually. The analysis of the new proposed system can be helpful to the system designers to create new system arrangements with higher performance.
    DOI/handle
    http://dx.doi.org/10.1016/j.applthermaleng.2021.117406
    http://hdl.handle.net/10576/50161
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video