• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanical behavior of resin pin-reinforced composite sandwich panels under quasi-static indentation and three-point bending loading conditions

    Thumbnail
    Date
    2021
    Author
    Eyvazian, Arameh
    Moeinifard, Majid
    Musharavati, Farayi
    Taghizadeh, Seyed Ahmad
    Mahdi, Elsadig
    Hamouda, Abdel Magid
    Tran, Trong Nhan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper reports the mechanical behavior of resin pin-reinforced composite sandwich panels made from polyvinyl chloride core and glass/epoxy face sheets under indentation of a hemispherical indenter and three-point bending loading conditions. The goal was to study the effects of reinforcing parameters such as the number, arrangement, and diameter of the through-the-thickness resin pins on the indentation maximum load, the bending strength, and energy absorption characteristics of the tested samples under these loading conditions. The results revealed that using the resin pins to reinforce the polyvinyl chloride foam core led to increase the indentation maximum load up to 47%, and the maximum bending load up to 34%, compared to nonreinforced foam-core sandwich structures. Also, the presence of resin pins led to the change in the failure modes of specimens (i.e. from local to global deformation and failure) and consequently increased the energy absorption capability of sandwich structures by 31% and 68% respectively under indentation and bending loads.
    DOI/handle
    http://dx.doi.org/10.1177/1099636220909752
    http://hdl.handle.net/10576/50258
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video