• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing Fuzzy Rule-Based Anfis Neuronal Fuzzy Architecture Through Integration with Binary Particle Swarm Optimization Technique for Low-Dimensional Data Modeling

    View/Open
    Afnan Al-Ali_ OGS Approved Dissertation.pdf (4.421Mb)
    Date
    2024-01
    Author
    Al-Ali, Afnan Samir
    Metadata
    Show full item record
    Abstract
    Fuzzy rule-based systems are instrumental in data interpretation, especially in scenarios dominated by low-dimensional data. While deep learning has revolutionized areas like image and speech recognition, its effectiveness diminishes in sparse, unstructured, or low-dimensional data. Besides, it requires vast parameter sets and substantial datasets for practical training and is prone to overfitting in data-scarce situations. Conversely, rule-based systems, underpinned by fuzzy logic, benefit from inherent interpretability. They offer insights into decision-making, with each rule providing a transparent rationale. This clarity is invaluable in sectors such as healthcare and finance, where comprehending the logic behind decisions is essential. However, these systems often falter with intricate and high-dimensional data. A strategy to counter these challenges is to merge rule-based systems with other machine-learning techniques. A prime example is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which combines the transparency of fuzzy rule-based systems with the adaptability of neural networks. However, traditional ANFIS has limitations, especially when using grid partitioning for rule generation. A significant drawback is the exponential growth in the rule count as the problem’s dimensionality increases despite its simplicity in implementation. In response to the challenges of rule-based systems, especially concerning ANFIS with grid partitioning, this research introduces two innovative models for strategic rule reduction. The first model employs Binary Particle Swarm Optimization (BPSO) with ANFIS as a feature selector for the normalized firing strength, effectively pruning the rule set while maintaining system integrity. The subsequent model incorporates Principal Component Analysis (PCA) on the normalized firing strengths first, transforming them into a linearly uncorrelated set of components. These components are then selectively optimized and evaluated using Binary Particle Swarm Optimization (BPSO), ensuring a comprehensive and impactful reduction. This method minimizes the rule set and ensures decision-making precision. Additionally, a custom parameter update mechanism fine-tunes specific ANFIS layers. Updating both Inertia and Acceleration Coefficients dynamically to adjust BPSO parameters, bypassing potential local minima issues. The effectiveness of these enhancements has been validated on standard datasets from UCI respiratory and keel, covering classification and regression tasks, and a real-world ischemic stroke dataset from Hamad Medical Corporation, emphasizing the models’ adaptability and practicality.
    DOI/handle
    http://hdl.handle.net/10576/51452
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video