• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0960148121012076-main.pdf (4.443Mb)
    Date
    2021-08-19
    Author
    Ahmad K., Sleiti
    Al-Ammari, Wahib A.
    Metadata
    Show full item record
    Abstract
    The solar power tower (SPT) has the potential to achieve high efficiency and large-scale power production due to its high achievable temperatures. However, thermal energy storage (TES) is required to solve the intermittency problem of the solar energy and to provide a dispatchable power production according to the power demand profile. Critical technical problems still exist in the TES systems including the high-temperature corrosion, expensive materials, temperature swing, and large size. Therefore, newly improvement approach is proposed by integrating the SPT system with direct oxy-combusted (DOC) sCO2 power cycle to enhance the overall efficiency and eliminate the need for the TES. In this paper, the off-design performance of two novel power cycle configurations that integrate SPT and DOC systems is investigated. The SPT system works as a preheater for the DOC system in the first configuration (S3) while works as a reheater in the second one (S4). The off-design analysis approach first verified and validated against published results and the results shows good agreement with error less than 1%. Also, the off-design analysis of these cycles is performed based on real ambient conditions and power demand profiles for two typical days in Qatar. The results show that the efficiency of S4 is considerably higher than S3, but S3 show better flexibility with the variation of the power demand profile. At 76% of the full load, the cycle efficiency is reduced by 5.64% in S4 and by 4.35% in S3. Moreover, at the design point conditions, the increase of the CIT reduces the cycle efficiency (by 8%) but also reduces the amount of the consumed fuel (by 15.8%). On the other hand, the increase of the TIT improves the cycle efficiency (by 8.6%) but also increases the consumed fuel by (57%).
    URI
    https://www.sciencedirect.com/science/article/pii/S0960148121012076
    DOI/handle
    http://dx.doi.org/10.1016/j.renene.2021.08.047
    http://hdl.handle.net/10576/51764
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video