• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Visual Twin for Pipeline Leak Detection

    Thumbnail
    Date
    2023-10-02
    Author
    Hamilton, M.
    Al-Ammari, W.
    AbuShanab, Y.
    Sleiti, A.
    Hassan, R.
    Hassan, I.
    Kaan, M. S.
    Rezaei-Gomari, S.
    Rahman, M. A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Objectives/Scope: We describe a visual digital twin system to allow for both operation and training of a data-driven pipeline leak detection system. We show system design in terms of its data inputs and the software system which incorporates this data in real time. This system allows visualization of pipeline data and machine learning-driven leak detection in a pipeline sitting in a subsea context. The intended purpose of the system is to both train operators of the leak detection system in its use and also provide high situational awareness to those tasked with monitoring pipeline deployments. The visual digital twin system uses gaming engine technology to achieve high visual quality. We also construct a novel software system enhancement to incorporate live data streams into the gaming engine environment. This allows real-time driving of gaming engine visualization elements with which we may augment the gaming engine environment. In terms of visualization, we focus on addressing problems of large ranges of multiple scales and providing high situational awareness which minimize operator fatigue and cognitive load. We show how multiple camera views in combination with a convenient user interface can help to address these issues. We demonstrate a digital twin system for leak detection. We show its realtime operation in a gaming engine environment with the ability to instantaneously incorporate outside data sources into the visualizations. We demonstrate using simulated pipeline flow data from sensors such as pressure, temperature, etc. This is visualized in the context of a subsea pipeline on a sea floor. Given the large range of scales, we demonstrate how we can view both the full kilometer scale pipeline and smaller subsections in the context of specific sensor data streams. The overall system demonstrates a novel combination of advanced software systems which incorporates real-time data stream with visualization using a high-fidelity gaming engine. The data used represents a leak detection scenario where both operator training and situational awareness are key desired outcomes.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85176773448&origin=inward
    DOI/handle
    http://dx.doi.org/10.2118/216749-MS
    http://hdl.handle.net/10576/51776
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video