• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mix and match: Collaborative expert-crowd judging for building test collections accurately and affordably

    Thumbnail
    Date
    2018-08
    Author
    Kutlu, Mucahid
    McDonnell, Tyler
    Sheshadri, Aashish
    Elsayed, Tamer
    Lease, Matthew
    Metadata
    Show full item record
    Abstract
    Crowdsourcing offers an affordable and scalable means to collect relevance judgments for information retrieval test collections. However, crowd assessors may showhigher variance in judgment quality than trusted assessors. In this paper, we investigate how to effectively utilize both groups of assessors in partnership. We study how agreement in judging is correlated with three factors: relevance category, document rankings, and topical variance. Based on this, we then propose two collaborative judging methods in which some document-topic pairs are assigned to in-house assessors for relevance judging while the rest are assessed by crowd workers. Results on two TREC collections show encouraging results when we distribute work intelligently between our two groups of assessors.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052640514&origin=inward
    DOI/handle
    http://hdl.handle.net/10576/52017
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video