• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Large-Scale Swarm Control in Cluttered Environments

    Thumbnail
    Date
    2024-01-01
    Author
    Elsayed, Saber
    Mabrok, Mohamed
    Metadata
    Show full item record
    Abstract
    In the evolving era of social robots, managing a swarm of autonomous agents to perform particular tasks has become essential for numerous industries. The task becomes more challenging for large-scale swarms and complex environments, which have not been fully explored yet. Therefore, this research introduces a methodology incorporating multiple coordinated robotic shepherds to effectively guide large-scale agent swarms in obstacle-laden terrains. The proposed framework commences with deploying an unsupervised machine-learning algorithm to categorise the swarm into clusters. Then, a shepherding algorithm with coordinated robotic shepherds drives the sub-swarms towards the goal. Also, a path planner based on an evolutionary algorithm is proposed to help robotic shepherds move in a way that minimises the dispersion of each sub-swarm and avoids potential hazards and obstructions. The proposed approach is tested on different scenarios, with the results showing a success rate of 100% in guiding swarms with sizes up to 3000 agents.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180631150&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/978-981-99-8715-3_32
    http://hdl.handle.net/10576/52326
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video