• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning Techniques for Network Anomaly Detection: A Survey

    Thumbnail
    Date
    2020-02-01
    Author
    Eltanbouly, Sohaila
    Bashendy, May
    Alnaimi, Noora
    Chkirbene, Zina
    Erbad, Aiman
    Metadata
    Show full item record
    Abstract
    Nowadays, distributed data processing in cloud computing has gained increasing attention from many researchers. The intense transfer of data has made the network an attractive and vulnerable target for attackers to exploit and experiment with different types of attacks. Therefore, many intrusion detection techniques have been evolving to protect cloud distributed services by detecting the different attack types on the network. Machine learning techniques have been heavily applied in intrusion detection systems with different algorithms. This paper surveys recent research advances linked to machine learning techniques. We review some representative algorithms and discuss their proprieties in detail. We compare them in terms of intrusion accuracy and detection rate using different data sets.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085496336&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ICIoT48696.2020.9089465
    http://hdl.handle.net/10576/52616
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video