• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermodynamic analysis and experimental validation of multi-composition ammonia liquor absorption engine cycle for power generation

    Thumbnail
    Date
    2020
    Author
    Satpute, Satchidanand R.
    Takalkar, Gorakshnath
    Mali, Nilesh
    Bhagwat, Sunil
    Metadata
    Show full item record
    Abstract
    Energy conservation, utilization, and effective integration are of utmost importance for future sustenance. Accordingly, this work focuses on the generation of power from the low-grade temperature below 150°C. A proposed novel multi-composition ammonia liquor absorption engine (MALAE) power cycle can be used toward the above purpose by supplying renewable energy obtained from low concentration type solar collectors. Proposed MALAE power cycle minimizes heal loss due to heat recovery and uses high purity NH3 vapors to expand through the isentropic turbine. MALAE power system is modeled and simulated using NH3-H2O as a working fluid for a reboiler temperature of 115°C. The purpose of this work is to simulate the proposed MALAE power cycle with the distillation column and two solution heat exchanger (SHE). MALAE modeling and simulation is accomplished in SCILAB software. The simulation outcome is validated with the pilot-scale 5 kW experimental setup and validation showed ±5% deviation. A comparison of MALAE cycle with published cycles signifies higher efficiency of MALAE cycle toward the utilization of low-grade energy from a temperature range of 100°C to 150°C. Finally, detailed parametric analysis of MALAE cycle efficiency is presented in terms of number of plates, distillation pressure and vapor flowrate, absorber temperature, pressure partial condenser temperature, and heat loads.
    DOI/handle
    http://dx.doi.org/10.1002/er.5463
    http://hdl.handle.net/10576/52924
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video