• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental Investigation and Uncertainty Prediction of the Load-Carrying Capacity of Composite Double Hat for Lattice Core Sandwich Panels Using Artificial Neural Network

    Thumbnail
    Date
    2020
    Author
    Laban, Othman
    Gowid, Samer
    Mahdi, Elsadig
    Metadata
    Show full item record
    Abstract
    Carbon fiber reinforced composites are promising candidates for building advanced multifunctional structures with superior properties that are suitable for the next generation of automotive and aircraft applications. This study presents an experimental investigation into the effect of the major orientation of the composite hat section on the crushing behavior and load-carrying capacity of a composite double hat structure. The variation in load carrying capacities due various measurement and manufacturing factors can significantly affect the design and thus safety. Therefore, the uncertainty in load carrying capacities is implicitly considered by identifying the maximum and minimum values of the load-carrying capacities at all displacement values. Artificial neural network-based models are then developed and compared using the Mean Squared Error (MSE) measure, with the objective to predict the load-carrying capacity range at each displacement value, which implicitly considers the uncertainty of results. Three samples of each arrangement are statistically analyzed and utilized in the training. The results show that the 'X' hat orientation outperforms the 'O' hat orientation in terms of load-carrying capacity. On the contrary, the 'O' hat orientation outperforms the 'X' hat orientation in terms of crash force efficiency with a total value of 0.6 for the former in comparison to 0.5 for the latter. A two layers ANN-models are found best in terms of performance with total RMSE values of 55.5 N for 'X' orientation and 515.8 N for 'O' orientation.
    DOI/handle
    http://dx.doi.org/10.1109/ICIoT48696.2020.9089603
    http://hdl.handle.net/10576/53018
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video