• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel robust automated FFT-based segmentation and features selection algorithm for acoustic emission condition based monitoring systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2015
    Author
    Gowid, Samer
    Dixon, Roger
    Ghani, Saud
    Metadata
    Show full item record
    Abstract
    This paper aims at developing a robust, fast-response and automated FFT-based features selection algorithm for the development of acoustic emission practical condition based monitoring applications of mechanical systems. Further scope of this work is to investigate the suitability of acoustic emission for the fault diagnostic of high speed centrifugal equipment using a single AE sensor. Experiments were conducted using an industrial air blower system with a rotational speed of 15,650 RPM. Five experiments for five different machine conditions were carried out. Ten data sets were collected for each machine condition with a total number of 50 data sets. Fifty percent of the data sets were used for training and the remaining data sets were used for verification. Tailor made programs for spectral features selection and for classification of faults were developed using Maltab to implement the proposed algorithm to an industrial air blower system. The results showed the suitability of the acoustic emission spectral features technique for the fault diagnostic of centrifugal equipment and proved the effectiveness and competitiveness of the proposed automated features selection algorithm. The sets of features selected by the algorithm yielded a detection accuracy of 100%.
    DOI/handle
    http://dx.doi.org/10.1016/j.apacoust.2014.08.007
    http://hdl.handle.net/10576/53022
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video