• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nitrogen-fixing cyanobacteria as a potential resource for efficient biodiesel production

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020-11-01
    Author
    Nagappan, S.
    Bhosale, Rahul
    Duc Nguyen, Dinh
    Pugazendhi, Arivalgan
    Tsai, Pei Chien
    Chang, Soon Woong
    Ponnusamy, Vinoth Kumar
    Kumar, Gopalakrishnan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The incessant utilization of non-renewable energy sources persistently pollutes the earth's atmosphere and thus requires the immediate substitution by renewable energy sources such as biofuel. In this study, several nitrogen-fixing cyanobacteria are screened for biodiesel production on the basis of biomass productivity, lipid productivity, lipid profiling, and harvesting potential. The assessment performed led to the identification of Nostoc sp. MCC41, a nitrogen ficxing cyanobacteria as promising species (0.39 day−1 specific growth rate, biomass productivity of 540 mg L−1 day−1, lipid productivity of 84 mg L−1 day−1 and 15.7% lipid content). A simple filtration experiment shows that almost 81% of the biomass of Nostoc sp. MCC41 is harvested without flocculation aid, while only 23–45% of the green algae (control) could be filtered. Based on the results, further optimization of Nostoc sp. MCC41 is carried out. The optimum light intensity to attain the highest lipid productivity is found to be 54 μmol photon m−2 s−1. Continuous illumination rather than other photoperiods is superior in terms of lipid productivity. Moreover, Nostoc sp. MCC41 could grow under mixotrophic conditions revealing the potential towards an organic carbon-rich wastewater treatment. At 0.5% glucose, the Nostoc sp. MCC41 exhibited nearly five-fold increase in biomass productivity when compared to the phototrophic conditions. Lipid profiling uncovered that Nostoc sp. MCC41 has a high concentration of palmitic acid, indicating its suitability for biodiesel. Given its easy mode of harvesting, ability to grow under mixotrophic condition, and ability to fix atmospheric nitrogen, Nostoc sp. MCC41 can be considered as a potential and eco-friendly resource for efficient biodiesel production.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087079450&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.fuel.2020.118440
    http://hdl.handle.net/10576/53509
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video