• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Lightweight Central Learning Approach for Arrhythmia Detection from ECG Signals

    Thumbnail
    Date
    2021
    Author
    Aboumadi, Abdulla
    Yaacoub, Elias
    Abualsaud, Khalid
    Metadata
    Show full item record
    Abstract
    With the development of Internet-of-Things (IoT) applications, the concept of smart healthcare applications has gradually emerged to be the main factor in medicine. In fact, this raises the need to have a secure system that is efficient at the same time, due to the limited resources of IoT devices. Many different techniques have been developed and studied recently. For example, with centralized learning (CL), all data are collected and processed in one place. But many of these models are heavy and do not meet IoT's resource constraints. Therefore, in this paper, the concept of CL using a convolutional neural network is performed to identify and classify arrhythmia, while taking into consideration the accuracy and simplicity in simulating a system model that would be used in medical devices. The MIT-BIH dataset was used in this work to test and validate the proposed approach, and compare it to other methods in the literature.
    DOI/handle
    http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00021
    http://hdl.handle.net/10576/53533
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video