• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lightweight IoT Malware Detection Solution Using CNN Classification

    Thumbnail
    Date
    2020
    Author
    Zaza, Ahmad M.N.
    Kharroub, Suleiman K.
    Abualsaud, Khalid
    Metadata
    Show full item record
    Abstract
    Internet of Things (IoT) is becoming more frequently used in more applications as the number of connected devices is in a rapid increase. More connected devices result in bigger challenges in terms of scalability, maintainability and most importantly security especially when it comes to 5G networks. The security aspect of IoT devices is an infant field, which is why it is our focus in this paper. Multiple IoT device manufacturers do not consider securing the devices they produce for different reasons like cost reduction or to avoid using energy-harvesting components. Such potentially malicious devices might be exploited by the adversary to do multiple harmful attacks. Therefore, we developed a system that can recognize malicious behavior of a specific IoT node on the network. Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network. The achievement shows how such models can be generalized and applied easily to any network while clearing out any stigma regarding deep learning techniques.
    DOI/handle
    http://dx.doi.org/10.1109/5GWF49715.2020.9221100
    http://hdl.handle.net/10576/53535
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video