• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detection and Collection of Waste Using a Partially Submerged Aquatic Robot

    Thumbnail
    Date
    2023
    Author
    Ayesh, Malek
    Qidwai, Uvais
    Metadata
    Show full item record
    Abstract
    With the amount of waste being dispersed into oceans on the rise, mitigating this issue has become a global concern. In the past few decades, governments, scientists, organizations, and individuals have been attempting to attenuate the effects of global warming, partially caused by improper waste disposal into oceans. This study presents a solar powered, partially submerged aquatic robot constructed from recycled, recyclable, upcycled, and sustainable materials. The robot aims to provide flexibility in the choice of construction materials by not being limited to what operating system, microcontroller, motors, and robot floaters are used. This robot detects and collects seven different categories of commonly littered waste namely cardboard (95.3%), wrappers (94.1%), metal cans (93.8%), surgical face masks (93.2%), plastic bags (96.2%), polystyrene (92.6%), and plastic bottles (93.8%). The custom detection system was evaluated based on whether it is capable of detecting waste and how well if little, medium, and high movement was introduced to the robot. Furthermore, the detection system's performance in low light situations along with the drivetrain's effectiveness was tested. Future improvements include forming larger dataset, enhancing the detection system's low light capabilities, and attaching a larger battery.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-031-16075-2_9
    http://hdl.handle.net/10576/54658
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video