• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IoT Based on-the-fly Visual Defect Detection in Railway Tracks

    Thumbnail
    Date
    2020
    Author
    Alnaimi, Noora
    Qidwai, Uvais
    Metadata
    Show full item record
    Abstract
    Railway transportation requires constant inspections and immediate maintenance to ensure public safety. Traditional manual inspections are not only time consuming, and expensive, but the accuracy of defect detection is also subjected to human expertise and efficiency at the time of inspection. Computing and Robotics offer automated IoT based solutions where robots could be deployed on rail-tracks and hard to reach areas, and controlled from control rooms to provide faster inspection. In this paper, a novel automated system based on robotics and visual inspection is proposed. The system provides local image processing while inspecting, cloud storage of information that consist of images of the defected railway tracks only, and robot localization within a range of 3-6 inches. The proposed system utilizes state of the art Machine Learning system and applies it on the images obtained from the tracks in order to classify them as normal or suspicious. Such locations are then marked and more careful inspection can be performed by a dedicated operator with very few locations to inspect (as opposed to the full track).
    DOI/handle
    http://dx.doi.org/10.1109/ICIoT48696.2020.9089560
    http://hdl.handle.net/10576/54670
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video