• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electroencephalography simulation hardware for realistic seizure, preseizure and normal mode signal generation

    Thumbnail
    Date
    2015
    Author
    Shakir, Mohamed
    Qidwai, Uvais
    Malik, Aamir Saeed
    Kamel, Nidal
    Metadata
    Show full item record
    Abstract
    Unlike the ECG and EKG simulators which are very commonly used for these applications, there is a big need for seizure related EEG simulator. Having a hardware system that can be used instead of a real patient to generate realistic EEG signals is still in research phase. Here a framework is presented that can be used to realize EEG simulator in a pseudo-embedded form. This implies that the analog output depends on real patient data. The proposed hardware simulator will enhance researchers and hardware validators to simulate, validate and test their detection algorithms forehand, as well as for clinicians to use this system for training as well as for academic exercises. By utilizing significant spectral contents of real patient data, a simulated signal can be reproduced any time and can be modified for the seizure and pre-seizure cases by utilizing the model coefficients identified through standard ARMA system identification technique. A novel work has been done in producing simulated data based on empirical models of the real waveforms. Such a simulator will be very helpful in EEG related research since all the initial algorithms can be tuned to the controlled data first before going to the actual human subjects. Unlike the commercial ECG simulators, to the best of our knowledge, there is no such commercially available system that can be used for such research tasks. With controlled data types, healthy/normal, seizure and pre-seizure classes, tuning of algorithms for detection and classification applications can be attained. The model has been validated and tested with respect to accuracy of correct regeneration, false prediction rate, specificity, sensitivity and false detection rate.
    DOI/handle
    http://dx.doi.org/10.1166/jmihi.2015.1352
    http://hdl.handle.net/10576/54676
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video