• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parametric modeling of EEG signals with real patient data for simulating seizures and pre-seizures

    Thumbnail
    Date
    2013
    Author
    Qidwai, Uvais
    Shakir, Mohamed
    Malik, Aamir Saeed
    Kamel, Nidal
    Metadata
    Show full item record
    Abstract
    Numerous theories and models have been developed to associate various findings or in relating EEG patterns to develop a software simulators. In this paper, a Dynamic model for simulating the EEG signal has been developed with empirical reference to real EEG signals from patients suffering from Seizure and Partial Seizure. Real EEG data set can be obtained in either.edf or.tdms or.txt formats from any clinical patient tests or database repository. The proposed model for the EEG signal has led to the development of a simulator which can be used to obtain any number of samples of data of a specific type (Normal, Pre-Seizure, and Seizure) and can be used by researchers for algorithmic testing. The presented simulator has a core of 22 patient's data with a variety of ages and gender selection options with possible connectivity to hardware based modules to generate the real EEG signal for external use as well. One can simulate, validate and test the detection algorithms beforehand, before actual clinical testing of the algorithms. Further, one can also develop pre-prediction algorithms for Seizure and pre-seizure states of a patient to take appropriate precautions just before the actual occurrence of the seizure. The model is based on the conventional ARX structure with subset frequencies from the real EEG signal used as excitation input. When plotted together, the resemblance between the original and simulated signals was very significant thus providing with a means to keep simulating with those frequencies to whatever length needed, with whatever variability in terms of amplitude and patient specific parameters.
    DOI/handle
    http://dx.doi.org/10.1109/ICHCI-IEEE.2013.6887810
    http://hdl.handle.net/10576/54690
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video