• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Blind Deconvolution for retinal image enhancement

    Thumbnail
    Date
    2010
    Author
    Qidwai, Uvais
    Qidwai, Umair
    Metadata
    Show full item record
    Abstract
    In this paper, a new technique is presented to enhance the blurred images obtained from retinal imaging. One of the main steps in inspecting the eye (especially the deeper image of retina) is to look into the eye using a slit-lamp apparatus that shines a monochromatic light on to the retinal surface and captures the reflection in the camera as the retinal image. While most of the cases, the image produced is quite clean and easily used by the ophthalmologists, there are many cases in which these images come out to be very blurred due to the disease in the eye such a cataract etc in such cases, having an enhanced image can enable the doctors to start the appropriate treatment for the underlying disease. The proposed technique utilizes the Blind Deconvolution approach using Maximum Likelihood Estimation approach. Further post-processing steps have been proposed as well to extract specific regions from the image automatically to assist the doctors in visualizing these regions related to very specific diseases. The post-processing steps include Image color space conversions, thresholding, Region Growing, and Edge detection.
    DOI/handle
    http://dx.doi.org/10.1109/IECBES.2010.5742192
    http://hdl.handle.net/10576/54710
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video