• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparison between iron and mild steel electrodes for the treatment of highly loaded grey water using an electrocoagulation technique

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1878535223006615-main.pdf (2.190Mb)
    Date
    2023-08-14
    Author
    Khalid, Bani-Melhem
    Rasool Al-Kilani, Muhammad
    Metadata
    Show full item record
    Abstract
    In the last years, the electrocoagulation (EC) process has been widely used as a potential technique for grey water treatment. However, only a few studies have focused on treating highly loaded GW (HLGW) by EC. In this study, the EC technique was used to compare iron and mild steel electrodes for the treatment of HLGW under different current densities (CDs) (5, 10, 15, and 20 mA/cm2) during 10 min of EC time. The performance criteria included chemical oxygen demand (COD) and turbidity removal efficiencies, current efficiency, energy consumption, and operational costs. It was found that EC using iron or mild steel can be effective electrodes for removing high levels of COD and turbidity from HLGW. At optimum conditions, the study demonstrated that at a CD of 5 mA/cm2, mild steel-based electrodes reduced COD by 86.5% while iron-based electrodes achieved 85.3% reduction at 10 mA/cm2. In conjunction with these removals, the turbidity removals were 92% and 94% achieved by steel and iron electrodes, respectively. The current efficiency of all the conducted experiments exceeded 90% but was generally higher for iron electrodes. At optimum conditions, analysis of operating costs in terms of energy consumptions and electrode materials requirements were 0.054 $/m3 and 0.097 $/m3 achieved by steel and iron electrodes, respectively. Thus, mild steel-based electrodes are considered superior to iron electrodes. Based on the obtained results, the study recommends that further investigations should give attention to the effect of metal alloy type or physical properties of electrodes as performance criteria and designing aspects when studying EC technology for HLGW treatment due to its notable effect on removal efficiency and operational costs.
    URI
    https://www.sciencedirect.com/science/article/pii/S1878535223006615
    DOI/handle
    http://dx.doi.org/10.1016/j.arabjc.2023.105199
    http://hdl.handle.net/10576/54896
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video