• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microservice instances selection and load balancing in fog computing using deep reinforcement learning approach

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0167739X24000815-main.pdf (2.262Mb)
    Date
    2024-03-04
    Author
    Wassim, Boudieb
    Malki, Abdelhamid
    Malki, Mimoun
    Badawy, Ahmed
    Barhamgi, Mahmoud
    Metadata
    Show full item record
    Abstract
    Fog-native computing is an emerging paradigm that makes it possible to build flexible and scalable Internet of Things (IoT) applications using microservice architecture at the network edge. With this paradigm, IoT applications are decomposed into multiple fine-grained microservices, strategically deployed on various fog nodes to support a wide range of IoT scenarios, such as smart cities and smart farming. Nonetheless, the performance of these IoT applications is affected by their limited effectiveness in processing offloaded IoT requests originating from multiple IoT devices. Specifically, the requested IoT services are composed of multiple dependent microservice instances collectively referred to as a service plan (SP). Each SP comprises a series of tasks designed to be executed in a predefined order, with the objective of meeting heterogeneous Quality of Service (QoS) requirements (e.g., low service delays). Different from the cloud, selecting the appropriate service plan for each IoT request can be a challenging task in dynamic fog environments due to the dependency and decentralization of microservice instances, along with the instability of network conditions and service requests (i.e., change quickly over time). To deal with this challenge, we study the microservice instances selection problem for IoT applications deployed on fog platforms and propose a learning-based approach that employs Deep Reinforcement Learning (DRL) to compute the optimal service plans. The latter optimizes the delay of application requests while effectively balancing the load among microservice instances. In our selection process, we carefully address the plan-dependency to efficiently select valid service plans for every request by introducing two distinct approaches; an action masking approach and an adaptive action mapping approach. Additionally, we propose an improved experience replay to address delayed action effects and enhance our model training efficiency. A series of experiments were conducted to assess the performance of our Microservice Instances Selection Policy (MISP) approach. The results demonstrate that our model reduces the average failure rate by up to 65% and improves load balance by up to 45% on average when compared to the baseline algorithms.
    URI
    https://www.sciencedirect.com/science/article/pii/S0167739X24000815
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2024.03.010
    http://hdl.handle.net/10576/55032
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video