• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using probabilistic neural networks for modeling metal fatigue and random vibration in process pipework

    Thumbnail
    Date
    2022
    Author
    Nashed, Mohamad Shadi
    Mohamed, M Shadi
    Shady, Omar Tawfik
    Renno, Jamil
    Metadata
    Show full item record
    Abstract
    Many experiments are usually needed to quantify probabilistic fatigue behavior in metals. Previous attempts used separate artificial neural network (ANN) to calculate different probabilistic ranges which can be computationally demanding for building probabilistic fatigue constant life diagram (CLD). Alternatively, we propose using probabilistic neural network (PNNs) which can capture data distribution parameters. The resulted model is generative and can quantify aleatoric uncertainty using a single network. Two tests are presented. The first captures the fatigue life aleatoric uncertainty for P355NL1 steel and successfully builds a probabilistic fatigue CLD. The resulted network is not only more efficient but also provides higher accuracy compared with ANN. To assess fatigue, the second test examines vibrations of a pipework assembly. The proposed methodology quantifies the nonlinear relation between the vibration velocity and the equivalent stress and successfully reflects measurements uncertainties in fatigue assessment. The proposed methodology is published in opensource format (https://github.com/MShadiNashed/probabilistic-machine-learning-for-fatigue-data).
    DOI/handle
    http://dx.doi.org/10.1111/ffe.13660
    http://hdl.handle.net/10576/55704
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video