• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling the Impact of Weather Conditions on Pedestrian Injury Counts Using LASSO-Based Poisson Model

    Thumbnail
    Date
    2021
    Author
    Abdella, Galal M.
    Shaaban, Khaled
    Metadata
    Show full item record
    Abstract
    Statistical models for measuring the impact of adverse weather conditions on pedestrian injuries are of great importance for enhancing road safety measures. The development of these models in the presence of high collinearity among the weather conditions poses a real challenge in practice. The collinearity among these conditions may result in underestimation of the regression coefficients of the regression model, and hence inconsistency regarding the impact of the weather conditions on the pedestrian injuries counts. This paper presents a methodology through which the penalization-based regression is applied to model the impact of weather conditions on pedestrian injury in the presence of a high level of collinearity among these conditions. More specifically, the methodology integrates both the least absolute shrinkage squared operator (Lasso) with the cross-validation approach. The statistical performance of the proposed methodology is assessed through an analytical comparison involving the standard Poisson regression, Poisson generalized linear model (Poisson-GzLM), and Ridge penalized regression model. The mean squared error (MSE) was used as a criterion of comparison. In terms of the MSE, the Lasso-based Poisson generalized linear model (Lasso-GzLM) revealed an advantage over the other regression models. Moreover, the study revealed that weather conditions involved in this study are of insignificant impact on pedestrian injury counts.
    DOI/handle
    http://dx.doi.org/10.1007/s13369-020-05045-w
    http://hdl.handle.net/10576/56161
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video