• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Horizontal Two-Phase Flow Regime Identification with Machine Learning Classification Models

    Thumbnail
    Date
    2022
    Author
    Manikonda, Kaushik
    Islam, Raka
    Obi, Chinemerem Edmond
    Hasan, Abu Rashid
    Sleiti, Ahmad Khalaf
    Abdelrazeq, Motasem Wadi
    Hassan, Ibrahim Galal
    Rahman, Mohammad Azizur
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper presents a follow-up study to Manikonda et al. (2021), which identified the best machine learning (ML) models for classifying the flow regimes in vertical gas-liquid two-phase flow. This paper replicates their study but with horizontal, gas-liquid two-phase flow data. Many workflows in the energy industry like horizontal drilling and pipeline fluid transport involve horizontal two-phase flows. This work and Manikonda et al. (2021) focus on two-phase flow applications during well control and extended reach drilling. The study started with a comprehensive literature survey and legacy data collection, followed by additional data collection from original experiments. The experimental data originates from a 20-ft long inclinable flow loop, with an acrylic outer tube and a PVC inner tube that mimics a horizontal drilling scenario. Following these data collection and processing exercises, we fit multiple supervised and unsupervised machine learning (ML) classification models on the cleaned data. The models this study investigated include K-nearest-neighbors (KNN) and Multi-class support vector machine (MCSVM) in supervised learning, along with K-means and Hierarchical clustering in unsupervised learning. The study followed this step with model optimization, such as picking the optimal K for KNN, parameter tuning for MCSVM, deciding the number of clusters for K-means, and determining the dendrogram cutting height for Hierarchical clustering. These investigations found that a 5-fold cross-validated KNN model with K = 50 gave an optimal result with a 97.4% prediction accuracy. The flow maps produced by KNN showed six major and four minor flow regimes. The six significant regimes are Annular, Stratified Wavy, Stratified Smooth at lower liquid superficial velocities, followed by Plug, Slug, and Intermittent at higher liquid superficial velocities. The four minor flow regions are Dispersed Bubbly, Bubbly, Churn, and Wavy Annular flows. A comparison of these KNN flow maps with those proposed by Mandhane, Gregory, and Aziz (1974) showed reasonable agreement. The flow regime maps from MCSVM were visually similar to those from KNN but severely underperformed in terms of prediction accuracy. MCSVM showed a 99% training accuracy at very high parameter values, but it dropped to 50% - 60% at typical parameter values. Even at very high parameter values, the test prediction accuracy was only at 50%. Coming to unsupervised learning, the two clustering techniques pointed to an optimal cluster number between 13-16. A robust horizontal two-phase flow classification algorithm has many applications during extended reach drilling. For instance, drillers can use such an algorithm as a black box for horizontal two-phase flow regime identification. Additionally, these algorithms can also form the backbone for well control modules in drilling automation software. Finally, on a more general level, these models could have applications in production, flow assurance, and other processes where two-phase flow plays an important role.
    DOI/handle
    http://dx.doi.org/10.2523/IPTC-22153-MS
    http://hdl.handle.net/10576/56202
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video