• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Shazed, Abdur Rahman
    Ashraf, Hafsa M.
    Katebah, Mary A.
    Bouabidi, Zineb
    Al-musleh, Easa I.
    Metadata
    Show full item record
    Abstract
    A new intensification concept was proposed for the liquefied natural gas (LNG) plants. Our concept capitalizes on solid oxide fuel cells (SOFCs) and efficient pressure/heat recovery. Detailed processes were synthesized, simulated and optimized (with and without carbon capture) to demonstrate our concept. These configurations were derived from a superstructure using a new conceptual methodology. Unlike many of the published SOFC systems, our concept and processes are specific to the LNG sector. Another unique aspect of this work is our comprehensive simulation and optimization analyses. We rigorously considered the entire LNG plant to derive tangible conclusions and fill the existing gaps in the literature concerning fuel balance, LNG/helium specification, to name a few. The optimization was challenging due to the high degree of interactions between the units and the enormous numbers of variables, amongst other factors. Therefore, we developed a different optimization strategy that is of a holistic nature, capable of simplifying the analysis and is suitable for other systems. Relative to a base case, our optimum configuration was capable of boosting production by over 4%, with 25% less emissions. As for the processes that capture carbon dioxide, the LNG output could be increased by 2.5%, with over 65% reduced emissions.
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2020.119510
    http://hdl.handle.net/10576/56838
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video