• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Radiation-free imaging for distal hole targeting in Intramedullary nailing

    Thumbnail
    View/Open
    Radiation-free imaging for distal hole targeting in intramedullary nailing- Monther Ghafel.pdf (2.870Mb)
    Date
    2017-06
    Author
    Abu-Gaoud, Monther Ghafel
    Metadata
    Show full item record
    Abstract
    Orthopedic surgeons are routinely faced with long-bone fractures. Their preferred surgical procedure for dealing with such cases is Intra-Medullary Nailing (IMN). The aforementioned surgery usually involves alignment of the fractured fragments of the long-bone followed by the insertion of a nail down its medullary canal. To prevent displacement of bone fragments, locking screws are inserted through the proximal and distal bone fragments into holes located at the proximal and distal regions of the nail. The most challenging part of IMN surgery is the location of the two distal holes of the nail after insertion, termed distal hole targeting. To find the exact location of the distal holes, several methods have been developed. The most popular method is the free-hand technique which involves the acquisition of radiographic images of the bone and nail to find the holes. The objective of this thesis is to review the current state of the art regarding distal hole targeting and investigate the possibility of developing an alternative imaging technique for finding the distal holes that will be free of ionizing radiation. More specifically, this work concentrates on characterizing the suitability of Earth’s Field Nuclear Magnetic Resonance (EFNMR) for this particular application. The characterization of this imaging method is performed through a series of experiments. The investigated solution poses several major challenges like contrast between different regions, time consumption, and detecting NMR signals in less than 19 ml water volume. The first two problems are resolved by using a contrast agent, Copper (II) Sulfate (CuSO4), which decreases the relaxation time by 6-7 times. In effect, this has decreased the experimental time. For instance, the experimental time was reduced from 8.32 min to 1.36 min. For the third challenge where the target is to detect the signal for 1.8 ml, all the proposed solutions have not worked as expected.
    DOI/handle
    http://hdl.handle.net/10576/5771
    Collections
    • Electrical Engineering [‎56‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video