• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal operation of reverse osmosis desalination process with deep reinforcement learning methods

    Thumbnail
    View/Open
    s10489-024-05452-8.pdf (3.966Mb)
    Date
    2024-04-01
    Author
    Golabi, Arash
    Erradi, Abdelkarim
    Qiblawey, Hazim
    Tantawy, Ashraf
    Bensaid, Ahmed
    Shaban, Khaled
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The reverse osmosis (RO) process is a well-established desalination technology, wherein energy-efficient techniques and advanced process control methods significantly reduce production costs. This study proposes an optimal real-time management method to minimize the total daily operation cost of an RO desalination plant, integrating a storage tank system to meet varying daily freshwater demand. Utilizing the dynamic model of the RO process, a cascade structure with two reinforcement learning (RL) agents, namely the deep deterministic policy gradient (DDPG) and deep Q-Network (DQN), is developed to optimize the operation of the RO plant. The DDPG agent, manipulating the high-pressure pump, controls the permeate flow rate to track a reference setpoint value. Simultaneously, the DQN agent selects the optimal setpoint value and communicates it to the DDPG controller to minimize the plant’s operation cost. Monitoring storage tanks, permeate flow rates, and water demand enables the DQN agent to determine the required amount of permeate water, optimizing water quality and energy consumption. Additionally, the DQN agent monitors the storage tank’s water level to prevent overflow or underflow of permeate water. Simulation results demonstrate the effectiveness and practicality of the designed RL agents.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85192829629&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s10489-024-05452-8
    http://hdl.handle.net/10576/58411
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video