• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-efficient management of unmanned aerial vehicles for underlay cognitive radio systems

    View/Open
    Energy-Efficient_Management_of_Unmanned_Aerial_Vehicles_for_Underlay_Cognitive_Radio_Systems.pdf (970.1Kb)
    Date
    2017
    Author
    Ghazzai, Hakim
    Ben Ghorbel, Mahdi
    Kadri, Abdullah
    Hossain, Md. Jahangir
    Menouar, Hamid
    Metadata
    Show full item record
    Abstract
    Micro unmanned aerial vehicles (MUAVs) have attracted much interest in multiple applications. Most of the MUAV-based applications require time-limited access to the spectrum to complete data transmission due to limited battery capacity of the flying units. These characteristics are the origin of two challenges in MUAV-based communications: 1) efficient-energy management and 2) opportunistic spectrum access. This paper proposes an energy-efficient solution to minimize the MUAV's flying and communication energies while integrating cognitive radio technology. A non-convex optimization problem exploiting the mobility of MUAVs is developed for the underlay operating mode where the data rate threshold of the spectrum's owner has to be respected. The objective is to determine a joint optimized 3-D location and transmit power control solution by which the secondary MUAV can complete its transmission. A deterministic algorithm based on the Weber formulation is proposed to solve the optimization problem. The performances of the deterministic approach are compared to those of a meta-heuristic algorithm, namely particle swarm optimization algorithm (PSO). Selected numerical results illustrate the behavior of the MUAV versus various system parameters. It is shown that the proposed solution achieves very close results to those of the PSO in spite of their different conceptional constructions.
    DOI/handle
    http://dx.doi.org/10.1109/TGCN.2017.2750721
    http://hdl.handle.net/10576/60445
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video