• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ORACE-Net: A novel multi-hop body-to-body routing protocol for public safety networks

    View/Open
    s12083-016-0513-9.pdf (4.234Mb)
    Date
    2017
    Author
    Ben Arbia, Dhafer
    Alam, Muhammad Mahtab
    Attia, Rabah
    Ben Hamida, Elyes
    Metadata
    Show full item record
    Abstract
    With the growing increase of disasters worldwide, in terms of frequencies, intensities and unpredictability, there is currently a growing need for novel ubiquitous communication systems enabling public safety networks (PSN). Disaster operations require real-time and low latency data communication, in live video and audio streaming, as well as in integration with social networks. In this context, existing network infrastructures might be either damaged or overloaded. Thus, it is expected that wireless Body-to-Body Networks (B2Bs) could play a key role in setting-up tactical PSN deployments enabling effective and reliable disaster response and management. In addition to the challenges with radio technologies and their inter-operability, coexistence and energy consumption issues, routing is also an important and critical challenge for the PSN. In this paper we propose a novel wireless B2B routing protocol, called "Optimized Routing Approach for Critical and Emergency Networks (ORACE-Net)" to enhance routing performance in disaster relief. ORACE-Net aims to exploit dynamic B2B communications between wearable networks to establish and maintain a mobile dynamic communication backbone. Analytical evaluations are conducted to analyze the communication overheads of ORACE-Net in comparison to existing routing standards, including Ad hoc On-Demand Distance Vector version 2 (AODVv2), Optimized Link State Routing Protocol version 2 (OLSRv2) and Greedy Perimeter Stateless Routing (GPSR). Extensive simulations are then performed under realistic assumptions and synthetic mobility models, and show that ORACE-Net outperforms conventional routing approaches in terms of packet reception rate, energy consumption and fairly performed in terms of delay compared to the other approaches.
    DOI/handle
    http://dx.doi.org/10.1007/s12083-016-0513-9
    http://hdl.handle.net/10576/61470
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Self-organized Operational Neural Networks with Generative Neurons 

      Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)
      Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ...
    • Thumbnail

      Wireless Network Slice Assignment with Incremental Random Vector Functional Link Network 

      He, Yu Lin; Ye, Xuan; Cui, Laizhong; Fournier-Viger, Philippe; Luo, Chengwen; Huang, Joshua Zhexue; Suganthan, Ponnuthurai N.... more authors ... less authors ( IEEE Computer Society , 2022 , Article)
      This paper presents an artificial intelligence-assisted network slice prediction method, which utilizes a novel incremental random vector functional link (IRVFL) network to deal with the wireless network slice assignment ...
    • Thumbnail

      A novel multi-hop body-To-body routing protocol for disaster and emergency networks 

      Ben Arbia, Dhafer; Alam, Muhammad Mahtab; Attia, Rabah; Ben Hamida, Elye ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      In this paper, a new multi-hop routing protocol (called ORACE-Net) for disaster and emergency networks is proposed. The proposed hierarchical protocol creates an ad-hoc network through body-To-body (B2B) communication ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video