• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-parametric tests

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2210650223000603-main.pdf (1.792Mb)
    Date
    2023
    Author
    Kenneth V., Price
    Kumar, Abhishek
    Suganthan, P.N.
    Metadata
    Show full item record
    Abstract
    Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal-like the final fitness values of multiple trials-but for many benchmarks, a trial can also terminate once it reaches a prespecified target value. In such cases, both the time that a trial takes to reach the target value (or not) and its final fitness value characterize its outcome. This paper describes how trial-based dominance can totally order this two-variable dataset of outcomes so that traditional non-parametric methods can determine the better of two algorithms when one is faster, but less accurate than the other, i.e. when neither algorithm dominates. After describing trial-based dominance, we outline its benefits. We subsequently review other attempts to compare stochastic optimizers, before illustrating our method with the Mann-Whitney U test. Simulations demonstrate that "U-scores" are much more effective than dominance when tasked with identifying the better of two algorithms. We validate U-scores by having them determine the winners of the CEC 2022 competition on single objective, bound-constrained numerical optimization. 2023
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2023.101287
    http://hdl.handle.net/10576/62222
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video