• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-Efficient Satellite Range Scheduling Using a Reinforcement Learning-Based Memetic Algorithm

    View/Open
    Energy-Efficient_Satellite_Range_Scheduling_Using_a_Reinforcement_Learning-Based_Memetic_Algorithm.pdf (3.085Mb)
    Date
    2024
    Author
    Song, Yanjie
    Suganthan, Ponnuthurai Nagaratnam
    Pedrycz, Witold
    Yan, Ran
    Fan, Dongming
    Zhang, Yue
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The rapid expansion of the satellite industry has presented numerous opportunities across various sectors and significantly transformed people's daily lives. However, the high energy consumption resulting from frequent task execution poses challenges for satellite management. Energy consumption has become an important factor to be considered in the design of future satellite management systems. The energy-efficient satellite range scheduling problem (EESRSP) aims to optimize task sequencing profits within the satellite management system while simultaneously conserving energy. To address this problem, a mixed-integer scheduling model is constructed, taking into account the energy consumption of ground stations during telemetry, tracking, and command (TT&C) operations. Then, we propose a reinforcement learning-based memetic algorithm (RL-MA) that incorporates a heuristic initialization method (HIM). The HIM enables the algorithm to rapidly generate high-quality initial solutions by leveraging task features associated with EESRSRP. RL-MA employs both population search and local search (LS) techniques to explore the satellite TT&C task plan. RL-MA incorporates two genetic operators, crossover and mutation, into the population-based search. In the LS stage, multiple random and heuristic LS operators are incorporated through an ensemble LS strategy. To improve search performance, Q-learning, a classical class of reinforcement learning (RL) methods tailored to problem characteristics, is utilized for selecting effective operators. RL dynamically adjusts LS operators based on strategy performance. Experimental results demonstrate that the proposed RL-MA can effectively generate sound solutions for EESRSP with varying task scales. Furthermore, the improvement strategies employed in the algorithm are validated to enhance the scheduling performance of RL-MA. This study reveals that integrating RL with an ensemble of LS operators can significantly enhance the algorithm's exploit capability. Moreover, this LS approach applies to solving other types of satellite scheduling problems.
    DOI/handle
    http://dx.doi.org/10.1109/TAES.2024.3371964
    http://hdl.handle.net/10576/62260
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video