• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neuro-Fuzzy Random Vector Functional Link Neural Network for Classification and Regression Problems

    Thumbnail
    View/Open
    Neuro-Fuzzy_Random_Vector_Functional_Link_Neural_Network_for_Classification_and_Regression_Problems.pdf (2.872Mb)
    Date
    2024
    Author
    Sajid, M.
    Malik, A. K.
    Tanveer, M.
    Suganthan, Ponnuthurai N.
    Metadata
    Show full item record
    Abstract
    The random vector functional link (RVFL) neural network has shown the potential to overcome traditional artificial neural networks' limitations, such as substantial time consumption and the emergence of suboptimal solutions. However, RVFL struggles to provide comprehensive insights into its decision-making processes. We propose the Neuro-fuzzy RVFL (NF-RVFL) model by combining RVFL with neuro-fuzzy system. The proposed NF-RVFL model takes humanlike decisions based on the IF-THEN approach and enhances its transparency in decision-making. Within this framework, input features undergo a fuzzification process as they traverse the fuzzy layer. The resulting fuzzified features then navigate a hidden layer through random projection as well as yielding defuzzified values via defuzzification. The defuzzified values, hidden layer outputs and original input features collectively contribute to the output prediction process. The proposed NF-RVFL model employs three distinct clustering methods to establish fuzzy layer centers: randomly initialized centers (referred to as R-means), K-means clustering centers, and fuzzy C-means clustering centers. This approach generates three distinct model variations, namely NF-RVFL-R, NF-RVFL-K and NF-RVFL-C, each producing a diverse set of fuzzified and defuzzified samples. Our research involves experiments on various UCI benchmark datasets, covering binary, multiclass classification, and regression tasks. The statistical tests and comprehensive experimental analyses consistently show that all variations of the proposed NF-RVFL model outperform baseline models, highlighting their generalization capabilities. The proposed NF-RVFL models show the generic nature by being adeptly applicable and excelling in regression as well as classification tasks.
    DOI/handle
    http://dx.doi.org/10.1109/TFUZZ.2024.3359652
    http://hdl.handle.net/10576/62278
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video