• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scalable fabrication of flexible thermoelectric generator with non-toxic Ga:ZnO and PEDOT:PSS thermoelements for wearable energy harvesting

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352492824032070-main.pdf (6.767Mb)
    Date
    2025
    Author
    Lemine, Aicha S.
    Bhadra, Jolly
    Maurya, Muni Raj
    Sadasivuni, Kishor Kumar
    Ahmad, Zubair
    Al-Thani, Noora J.
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study presents a lightweight, flexible thermoelectric generator (TEG) designed for sustainable energy harvesting in wearable electronics. The TEG integrates p-type PEDOT:PSS and n-type Ga:ZnO thermoelements, utilizing scalable drop-casting and 3D-printing techniques to address key concerns of sustainability, scalability, and safety. Unlike conventional TEGs that rely on toxic or rare-earth materials, this device employs predominantly earth-abundant, non-toxic components, offering a more cost-effective and environmentally friendly alternative. Structural analysis using FE-SEM and EDX revealed a relatively dense microstructure with uniform elemental distribution in the free-standing thermoelements, contributing to the device’s mechanical flexibility and performance stability. The TEG, consisting of five thermoelement pairs, achieved a peak open-circuit voltage of 0.111 mV and a power output of 0.123 nW at a temperature difference (ΔT) of 10 K, demonstrating performance competitive with TEGs fabricated using more complex and expensive methods. When tested on a human wrist, the TEG generated 0.230 nW at a ΔT of 17 K, outperforming other wearable TEGs, with power increases observed during body movement. Additionally, the device maintained stable resistance at a 90° bending angle, enhancing its ability to conform to the body’s shape for improved energy harvesting and efficiency. While the power output can be further improved, this TEG represents a notable advancement in flexibility, scalability, and the use of eco-friendly, cost-effective materials and fabrication methods. Addressing these critical challenges in wearable thermoelectrics paves the way for future self-powered health monitoring, fitness tracking, and environmental sensing applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.mtcomm.2024.111225
    http://hdl.handle.net/10576/63021
    Collections
    • Biomedical Research Center Research [‎786‎ items ]
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video