• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A New Method for Detecting the Fatigue Using Automated Deep Learning Techniques for Medical Imaging Applications

    View/Open
    s11277-024-11102-6.pdf (1.927Mb)
    Date
    2024
    Author
    Gnanadesigan, Naveen Sundar
    Lincoln, Grace Angela Abraham
    Dhanasegar, Narmadha
    Muthusamy, Suresh
    Kannan, Deeba
    Balasubramanian, Surendiran
    Bacanin, Nebojsa
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In the human race, Fatigue may contribute to a decline in efficiency. Fatigue is a risk factor for health and a component of quality degradation. The effects of Fatigue include sleep disorders, depression, and worry, all of which can lead to life-threatening issues. This project uses machine learning and deep learning techniques to identify a person's degree of Fatigue and its effects. The developed deep learning network can accurately distinguish between normal and exhausted states. This detection device uses physiological characteristics to guarantee high detection rates and accuracy. The project aims to recognize fatigue levels by examining the features extracted from the batch of images and classifying them into their respective class labels, such as Alert, Non-Vigilant, and Fatigued. To implement the detection procedures using deep structured learning that will yield very accurate image recognition and classification results, a large-scale image dataset is transported through efficient algorithm strategies and is processed to transform the data by labelling the patterns, tracking the correlations, and producing supreme results. The images will be diagnosed by employing the pre-trained models of the Convolutional Neural Networks (CNN), convolving through the hidden layers, applying the filters, and sharing the weights. Alex Net, Resnet50, and MobilenetV2 are the potential classifiers that will expand, filter, train, compress, and test through the neurons of the subjects. The layers and the non-linear functionalities are designed in the wake of the structured embedding of the model to deliver efficient metrics. The proposal offers the best accuracy for the established MobilenetV2 model with 99.8% accuracy and validates it with high-performance results.
    DOI/handle
    http://dx.doi.org/10.1007/s11277-024-11102-6
    http://hdl.handle.net/10576/63024
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video