• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fe2O3 decorated reduced graphene oxide sheets for enhanced sensing applications for dopamine

    View/Open
    s42247-024-00784-0.pdf (2.426Mb)
    Date
    2024
    Author
    Priyavrat
    Khan, Ariba
    Kunal
    Sadasivuni, Kishor K.
    Singh, Anil Kumar
    Ansari, Jamilur R.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study explored the use of iron (III) oxide (Fe2O3) inorganic crystals attached to reduced graphene oxide (rGO) sheets for electrochemical sensing, particularly in detecting dopamine. Fe2O3 was selected because of its cost-effectiveness, environmental friendliness, and its ability to improve sensing capabilities in combination with rGO. The rGO sheets were produced using the modified Hummers method, while Fe2O3 nanoparticles were synthesized using the sol-gel method. Various characterization techniques, including UV-Vis spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to examine the properties and morphologies of the hybrid composites. The research showed that the Fe2O3-decorated rGO sheets exhibited excellent electrochemical sensing performance for dopamine, with a sensitivity of 0.69 mA/mM measured using square wave voltammetry (SWV). The improved sensing capabilities were attributed to the unique properties of rGO, including high surface activity, a large specific surface area, and excellent electrical conductivity, combined with the incorporation of Fe2O3 nanoparticles. These findings demonstrate the potential of these cost-effective and environmentally friendly materials for various sensing applications, particularly for developing electrochemical sensors for detecting dopamine and other electroactive species.
    DOI/handle
    http://dx.doi.org/10.1007/s42247-024-00784-0
    http://hdl.handle.net/10576/63027
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video