• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ANN-optimized NR-SHE method for single-sourced, multi-configurable switched capacitor-based multilevel inverter for sustainable power applications

    View/Open
    s00202-024-02803-z.pdf (4.122Mb)
    Date
    2024
    Author
    Thangapandi, Anand Kumar
    Krishnasamy, Umamaheswari
    Muthusamy, Suresh
    Sadasivuni, Kishor Kumar
    Ramachandran, Meenakumari
    Vadivel, Surendar
    Bacanin, Nebojsa
    Elngar, Ahmed A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Multilevel inverters (MLIs) are widely preferred in sustainable power applications for their ability to deliver efficient output with low total harmonic distortion (THD) while minimizing the use of power semiconductor components. The single-sourced multilevel inverter based on switched capacitors has fewer components and better boosting. The proposed design eliminates the need for large DC-DC converters and transformers commonly used in traditional systems by incorporating switching capacitors. Furthermore, the self-balancing nature of these capacitors eliminates the necessity for additional sensors or control algorithms. In addition to supporting both symmetric and asymmetric configuration, the design achieves twice the voltage gain with a lower total blocking voltage (TBV). The ANN-based Newton-Raphson (NR) method, combined with selective harmonic elimination, can achieve a reduction in total harmonic distortion by up to 6%. A lower total blocking voltage, less losses, a smaller component count and an enhanced gain factor are some of the benefits of the system. In addition, the suggested system has an efficiency of up to 96% and lower overall voltage stress. Experimental validation under varying conditions has been conducted in addition to simulations using MATLAB/Simulink to assess the dynamic performance and operation of the suggested topology.
    DOI/handle
    http://dx.doi.org/10.1007/s00202-024-02803-z
    http://hdl.handle.net/10576/63029
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video