• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preparation and characterization of EVA/PLA/sugarcane bagasse composites for water purification

    Thumbnail
    Date
    2017
    Author
    Makhetha, T.A.
    Mpitso, K.
    Luyt, A.S.
    Metadata
    Show full item record
    Abstract
    Poly(lactic acid)/ethylene vinyl acetate blends and poly(lactic acid)/ethylene vinyl acetate/sugarcane bagasse composites were prepared by melt mixing. The lower viscosity of poly(lactic acid), the lower interfacial tension between poly(lactic acid) and sugarcane bagasse, and the wetting coefficient of poly(lactic acid)/sugarcane bagasse being larger than one, all suggested that sugarcane bagasse would preferably be in contact with poly(lactic acid). A fairly good dispersion of sugarcane bagasse was observed in the composites. Exposed fibre ends were observed in the composite micrographs, which were believed to add to the efficiency of metal adsorption. The impact properties depended more on the poly(lactic acid):ethylene vinyl acetate ratio than on the presence of sugarcane bagasse. The poly(lactic acid)/ethylene vinyl acetate blends showed two melting peaks at approximately the same temperatures as those of the neat polymers, which confirms the complete immiscibility of poly(lactic acid) and ethylene vinyl acetate at all the investigated compositions. Sugarcane bagasse-related weight loss occurred at higher temperatures for sugarcane bagasse in the composites, which could have been the result of the sugarcane bagasse being protected by the polymers, or a delay in the diffusion of the sugarcane bagasse decomposition products out of the sample. Water absorption increased with an increase in sugarcane bagasse loading in the composites. More lead was adsorbed than one would expect if the partial coverage of the fibre by the polymer is taken into account, and therefore it may be assumed that some of the lead was trapped inside the cavities in the composites and that the polymers may also have played a role in the metal complexation process, since both polymers have functional groups that could interact with the lead ions. The metal impurities underwent monolayer adsorption.
    DOI/handle
    http://hdl.handle.net/10576/6802
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video