• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A predictive strategy for lifetime maximization in selective relay networks

    Thumbnail
    Date
    2009-04-24
    Author
    Mousavifar, S.A.
    Khattab, T.
    Leung, C.
    Metadata
    Show full item record
    Abstract
    Two algorithms based on an energy conserving dynamic transmit power threshold are proposed for improving the lifetime in relay networks utilizing selective relay strategies with amplify-and-forward (AF) relays. the lifetime of the relay network is defined as the maximum number of successfully received messages satisfying a desired SNR at the destination under probability of outage constraints. In the first algorithm, the predicted outage probability, calculated based on the energy conserving dynamic threshold, is constrained at each transmission. In this case, when the number of relays is large, the improvement is substantial. As the number of relays decreases, the method improves the lifetime under the condition of high initial energy levels at the relays. In the second method, targeting applications which are not sensitive to the distribution of outage throughout the lifetime of the relay network, the predicted probability of outage, calculated based on laws-of-physics limitations only, is constrained at each transmission. Using the second method, greater lifetime improvements are achieved and average outage constraints are maintained at the expense of a few instantaneous outage probability violations. Both algorithms are implemented in conjunction with previously proposed energy greedy relay selection strategies such as Minimum Power Transmission (MPT), Maximum Residual Energy (MRE), Minimum Energy Index (MEI), and Maximum Outage Probability (MOP).
    DOI/handle
    http://dx.doi.org/10.1109/SARNOF.2009.4850300
    http://hdl.handle.net/10576/10463
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video