Show simple item record

AdvisorMassoud, Ahmed Mohammed
AuthorFakhry, Mena Guirguis
Available date2018-12-19T10:58:50Z
Publication Date2018
URIhttp://hdl.handle.net/10576/11224
AbstractNowadays, Renewable Energy Sources (RESs) are receiving enormous attention due to the noticeable exhaustion of fossil fuel and its emission of greenhouse gases. DC-AC converters have attracted the attention of the researchers, as they are entailed to integrate RESs to the grid to comply with the grid frequency and voltage requirements. Due to the high penetration of RESs, especially with elevated power levels, high-power converters are needed, which necessitates higher voltage and current ratings of the semiconductor devices. The unavailability of high voltage semiconductor devices has directed the attention to the use of either series connection of semiconductor devices or Multilevel Inverters (MLIs). MLIs allow using several low rated semiconductors to hold the high output power of the inverter. The MLI output waveform is close to sinusoidal in nature, therefore it may require a small filter to enhance the output power quality. There are many types of MLIs, where the most common MLIs are Flying Capacitor, Diode Clamped, and Modular Multilevel Cascaded Converter (MMCC). The MMCC can be classified into three main formations, the Single-Star Bridge-Cells MMCC (SSBC-MMCC), the Double-Star Bridge-Cells MMCC (DSBC-MMCC), and the Double-Star Chopper-Cells MMCC (DSCC-MMCC). The main advantage of the MMCC is the modularity and scalability. In addition, the MMCC does not require any clamping diodes or flying capacitors for clamping the voltage across the switches. In this thesis, the MMCC will be used to integrate high-power RESs to Grid. Nevertheless, the high-power applications necessitate low switching frequency operations. One of the most common controlling techniques of MLI with low frequency operation is the Selective Harmonic Elimination (SHE). SHE insures also the output current Total Harmonic Distortion (THD) to be minimized. One disadvantage of the SHE method is that the complexity of the algorithm along with the equations used is increased by the increase of the MMCC number of levels. Therefore, other alternatives of SHE techniques will be studied in this work to overcome this complexity. This thesis focuses typically on MMCC, particularly the SSBC-MMCC. In this work, a high-power grid-connected SSBC-MMCC is controlled with three different SHE techniques, complying with low switching frequency operation limitation in high-power applications. In addition to the Conventional SHE (C-SHE) technique, Quasi-SHE (Q-SHE) and Asymmetrical-SHE (A-SHE) approaches are proposed and assessed. Q-SHE and A-SHE approaches are based on eliminating selected low order harmonics (for instance, eliminating the fifth and seventh order harmonics), irrelevant to the number of employed levels provided that the number of levels allows for the required harmonic elimination. Compared with the C-SHE approach, the Q-SHE and A-SHE require less computational burden in solving the required equation groups, especially when a high number of levels and/or multiple switching angles for each voltage level are needed, while maintaining the same dv/dt of the output voltage. A 5MW, 17-level, grid-connected SSBC-MMCC, controlled in the synchronous rotating reference frame, is employed for assessing the addressed SHE techniques. The assessment is validated through simulation results using Matlab/Simulink platform.
Languageen
SubjectDC-AC converters
Modular Multilevel Cascaded Converter (MMCC)
Total Harmonic Distortion (THD)
TitleGrid-Connected Single-Star Bridge-Cells Modular Multilevel Cascaded Converter with Selective Harmonic Elimination Techniques
TypeMaster Thesis
DepartmentElectrical Engineering
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record