• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Antibacterial Properties of Polysulfone Membranes Blended with Arabic Gum.

    Thumbnail
    View/Open
    membranes-09-00029.pdf (31.43Mb)
    Date
    2019-02-01
    Author
    Sabri, Souhir
    Najjar, Ahmad
    Manawi, Yehia
    Eltai, Nahla Omer
    Al-Thani, Asma
    Atieh, Muataz Ali
    Kochkodan, Viktor
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Polysulfone (PS) membranes blended with different loadings of arabic gum (AG) were synthesized using phase inversion method and the antibacterial properties of the synthesized membranes were tested using a number Gram-negative (, and ) and Gram-positive () bacterial species. It was shown that AG addition to the dope polymer solutions essentially changed porous structure, hydrophilicity and zeta potential of the cast PS/AG membranes. These changes were due to the amphiphilic properties of AG macromolecules that contained negatively charged hydrophilic residues. A pronounced decrease in bacterial attachment was seen in the field emission scanning electron microscopy (FESEM) images for PS/AG membrane samples compared to both commercial (Microdyn-Nadir) and bare PS (without AG) membranes. AG loading dependent trend was observed where the prevention of bacterial colonization on the membrane surface was strongest at the highest (7 wt. %) AG loading in the casting solution. Possible mechanisms for the prevention of bacterial colonization were discussed. Significantly, the inhibition of bacterial attachment and growth on PS/AG membranes was observed for both Gram-positive and Gram-negative bacterial models, rendering these novel membranes with strong biofouling resistance attractive for water treatment applications.
    DOI/handle
    http://dx.doi.org/10.3390/membranes9020029
    http://hdl.handle.net/10576/11377
    Collections
    • Biomedical Research Center Research [‎808‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video