Real-time Driver Drowsiness Detection for Android Application Using Deep Neural Networks Techniques
المؤلف | Jabbar R. |
المؤلف | Al-Khalifa K. |
المؤلف | Kharbeche M. |
المؤلف | Alhajyaseen W. |
المؤلف | Jafari M. |
المؤلف | Jiang S. |
تاريخ الإتاحة | 2019-05-19T10:09:46Z |
تاريخ النشر | 2018 |
اسم المنشور | Procedia Computer Science |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 18770509 |
الملخص | Road crashes and related forms of accidents are a common cause of injury and death among the human population. According to 2015 data from the World Health Organization, road traffic injuries resulted in approximately 1.25 million deaths worldwide, i.e. approximately every 25 seconds an individual will experience a fatal crash. While the cost of traffic accidents in Europe is estimated at around 160 billion Euros, driver drowsiness accounts for approximately 100,000 accidents per year in the United States alone as reported by The American National Highway Traffic Safety Administration (NHTSA). In this paper, a novel approach towards real-time drowsiness detection is proposed. This approach is based on a deep learning method that can be implemented on Android applications with high accuracy. The main contribution of this work is the compression of heavy baseline model to a lightweight model. Moreover, minimal network structure is designed based on facial landmark key point detection to recognize whether the driver is drowsy. The proposed model is able to achieve an accuracy of more than 80%. |
راعي المشروع | Qatar National Research Fund,Qatar Foundation |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Android Deep Learning Driver Monitoring System Drowsiness Detection Real-time Deep Neural Network |
النوع | Conference Paper |
الصفحات | 400 - 407 |
رقم المجلد | 130 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
السلامة المرورية [163 items ]