• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Student Theses & Dissertations
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University QSpace
  • Academic
  • Student Theses & Dissertations
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Resource Allocation Using Deep Learning-Based Adaptive Compression For Mhealth Applications

    Icon
    View/Open
    AbeerAlMarridi_OGSApprovedThesis.pdf (3.959Mb)
    Date
    2018-01
    Author
    Al-Marridi, Abeer Ziad
    Metadata
    Show full item record
    Abstract
    In the last few years the number of patients with chronic diseases that require constant monitoring increases rapidly; which motivates the researchers to develop scalable remote health applications. Nevertheless, transmitting big real-time data through a dynamic network limited by the bandwidth, end-to-end delay and transmission energy; will be an obstacle against having an efficient transmission of the data. The problem can be resolved by applying data reduction techniques on the vital signs at the transmitter side and reconstructing the data at the receiver side (i.e. the m-Health center). However, a new problem will be introduced which is the ability to receive the vital signs at the server side with an acceptable distortion rate (i.e. deformation of vital signs because of inefficient data reduction). In this thesis, we integrate efficient data reduction with wireless networking to deliver an adaptive compression with an acceptable distortion, while reacting to the wireless network dynamics such as channel fading and user mobility. A Deep Learning (DL) approach was used to implement an adaptive compression technique to compress and reconstruct the vital signs in general and specifically the Electroencephalogram Signal (EEG) with the minimum distortion. Then, a resource allocation framework was introduced to minimize the transmission energy along with the distortion of the reconstructed signal
    DOI/handle
    http://hdl.handle.net/10576/11818
    Collections
    • Computer Science & Engineering [‎51 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video